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Tree planting is widely promoted as a cost-effective natural climate solution, yet there are few evalua-
tions of the implementation of tree planting. Our analysis of a unique dataset on tree planting in the
Indian Himalayan state of Himachal Pradesh shows that over half of the state’s budget for tree planting
is wasted on plantations that are unlikely to survive and/or are poorly designed to achieve the state’s goal
of increasing forest cover. Himachal Pradesh (and India more generally) has been identified as a high
potential area for natural climate solutions due to high government capacity, adequate funding, and gov-
ernment agencies with extensive planting experience. We combine data on the location and financial
outlay for plantations, which allow us to analyze the relationship between plantations and social and bio-
physical conditions, with a machine learning model, trained on past land cover change, which predicts
the likelihood of future tree cover loss in plantation areas. Our finding that even in this high potential area
tree planting programs involve considerable wasted expenditure on ineffective plantations raises ques-
tions about optimistic assessments of the potential for tree planting to serve as a cost-effective natural
climate solution. We suggest deemphasizing the target-based approaches that dominate present
policy-making and high-profile scientific publications, which we argue are the cause of wasted expendi-
tures in Himachal Pradesh. Instead policy-makers and scientists interested in natural climate solutions
should focus on developing solutions that respond to local biophysical, social, and economic realities,
and are implemented through transparent procedures that increase accountability to and reinforce the
rights of forest dependent people.
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1. Introduction

Natural climate solutions have been proposed as cost-effective
and low-cost carbon mitigation tools (Busch et al., 2019; Griscom
et al.,, 2017). However socioeconomic, biophysical, and financial
constraints can reduce their potential (Fleischman et al., 2020;
Teo et al,, 2021; Zeng et al., 2020). Tree planting is one of the most
widely promoted natural climate solutions, as well as a major focus
of global initiatives such as the Bonn Challenge and the UN Decade
on Restoration (Bastin et al., 2019; Busch et al.,, 2019; Hawes,
2018), yet there is little published evidence about the impacts of
tree planting programs on land cover, carbon storage, or other out-
comes (Le et al., 2012)., Recent research documents high failure
rates in plantation projects (Aggarwal, 2021; Asher & Bhandari,
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2021; Coleman et al., 2021; Duguma et al., 2020; Fleischman
et al., 2021), negative social-ecological consequences of plantations
(Asher & Bhandari, 2021; Di Sacco et al., 2021; Fleischman et al.,
2020; Ramprasad et al., 2020) and limited impacts of tree planting
on forest cover density and rural livelihoods (Coleman et al., 2021).
In this paper, we examine the practice of tree planting in the North
Indian state of Himachal Pradesh to better understand how
restoration-oriented tree planting is implemented.

India has been identified as a potential global forest restoration
leader due to its relatively good governance and financial capacity,
at least when compared to other countries in the tropics (Griscom
et al.,, 2020). India’s Nationally Determined Contribution aims to
mitigate carbon equivalent to 2.5-3 billion tons CO?%e (0.61-0.73
Pg C) by 2030 with a heavy emphasis on tree planting to achieve
this goal (Government of India, 2015; Singh et al., 2021). Himachal
Pradesh has seen decades of investment in large-scale tree planting
(Asher & Bhandari, 2021; Coleman et al., 2021; Davis & Robbins,
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2018; Fleischman, 2014; Ramprasad et al., 2020; Rana & Miller,
2021), and has a longstanding reputation as one of the most
well-governed states in India (Dreze, 1997; Dreze & Sen, 2002)
and this combination of extensive experience and overall gover-
nance quality makes the state a “most likely case” (George &
Bennett, 2005) to observe the effective implementation of tree
planting programs. We use ensemble machine learning methods
to predict the probability of future tree cover loss in recently
planted areas in the state of Himachal Pradesh and to compare
these predicted probabilities with afforestation spending and tree
canopy densities. Our analysis shows that a significant portion of
trees planted in recent years have been planted in locations where
the potential restoration and carbon storage benefits are limited.
Tree plantations that bring limited benefits may be a waste of
money that could be spent on more effective mitigation measures.
These results point to the importance of the design, planning, and
implementation of proposed large-scale forest based climate miti-
gation to avoid wasted resources and potential harms to ecosys-
tems and people.

2. Challenges for effective tree planting and problems in the
assessment of site suitability

Tree planting programs face three challenges that can lower
their effectiveness as a natural climate solution. First, the target-
based nature of many programs may lead to a limited focus on
short-term outcomes such as meeting acreage targets or evaluating
seedling survivorship after 3-5 years while ignoring long-term
goals such as improving tree cover or restoring ecosystems
(Fleischman, 2014; Joshi et al., 2011). Second, the focus on tree
planting targets may come at the expense of understanding under-
lying causes of forest loss and regrowth, and/or lead to unintended
consequences (Sloan, 2022). This problem has been common in
past approaches adopted by the international community for
improving forests in the developing world: for example, Reducing
Emissions from Deforestation and Forest Degradation (REDD +)
often fails because it focuses on changing local actors’ behavior
rather than addressing underlying causes of deforestation or forest
degradation (Brockhaus et al., 2014; Skutsch & Turnhout, 2020),
while donor-led participatory forest management often hides
likely losses and hardships local communities face and fails to
ensure meaningful participation of local communities (Hajjar
etal.,, 2021; Rana & Chhatre, 2017). Third, a focus on meeting quan-
titative planting targets may result in planting trees where they are
biophysically unsuited or not desirable for socioeconomic reasons.

Previous scholarship has underlined the importance of assess-
ing the match between biophysical site characteristics and tree
species suitability (Apps & Price, 2013; Bongers et al., 2021; FAO,
1984; Maclaren, 1996; Sathaye, 1996), yet the pressure to imple-
ment large-scale afforestation may not allow for site suitability
assessments (Brancalion & Holl, 2020; Di Sacco et al., 2021;
Duguma et al., 2020; Lewis et al., 2019; Veldman et al., 2015). Fur-
thermore, while existing site assessment methods emphasize bio-
physical suitability, it is often social and economic limits, rather
than biophysical ones, that drive restoration outcomes
(Brancalion & Holl, 2020; Di Sacco et al., 2021; Duguma et al.,
2020; Fleischman et al., 2020; Osborne et al., 2021). While there
is abundant literature on the social and economic suitability of tree
species for agroforestry systems (Kumar & Nair, 2011), species that
are desirable as agroforestry crops may have limited utility for
restoration in less intensively managed sites. Moreover, using
multi-functional and diverse species in forest restoration projects
promote productivity in the long-term compared to monoculture
plantations (Bongers et al., 2021). For these reasons, some scholars
have questioned widely publicized assessments that promote
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large-scale forest restoration as a low-cost tool for carbon mitiga-
tion without emphasizing the importance of site suitability assess-
ments and planting of multi-functional species (Apps & Price,
2013; Bongers et al., 2021; Grainger, 1996; Lewis, Mitchard,
et al,, 2019; Veldman et al., 2019).

Furthermore, multi-year tree planting programs can be expen-
sive, and annual tree planting costs are high (Brancalion et al.,
2019). Ding et al estimate $300 to $400 billion per year is required
to meet global conservation and restoration needs (Ding et al.,
2017). Currently, a large portion of the proposed afforestation
and reforestation consists of government-funded large-scale tree
planting (Lewis et al., 2019), including in India where there is a
long history of government-led afforestation (Davis & Robbins,
2018; Rana & Miller, 2021; Saxena, 1997), and where there are
plans to spend $6 billion to reforest 12% of its land by 2030
(Howard, 2016). Despite these high costs & large financial commit-
ments, national governments and international agencies carrying
out recent commitments lack robust evidence on the cost-
effectiveness of natural solutions. Building such evidence is chal-
lenging owing to multiple nature-based benefits, the non-
inclusion of trade-offs among different interventions and ecosys-
tem services, and the changes in the provision of ecosystem ser-
vices and goods over time (Seddon et al., 2020). In this paper, we
evaluate the impact of 4 years of government-led tree planting
programs in Himachal Pradesh using data from budget documents,
plantation locations, and remotely sensed land cover change ana-
lyzed with an ensemble machine learning algorithm.

3. Data and methods
3.1. Study area, overview of tree planting and nature of data

To understand the on-the-ground impact of afforestation pro-
grams, we focus on the Indian state of Himachal Pradesh. We chose
Himachal Pradesh for this study for two reasons. First, Himachal
has long been one of the wealthiest, most developed, and best-
governed states in India (Dreze, 1997; Dreze, & Sen, 2002), and
therefore, it represents a strong case study for testing the hypoth-
esis that government-led tree planting programs in India can suc-
cessfully deliver forest improvements (George & Bennett, 2005).
Second, we were able to obtain detailed budgetary records on
afforestation programs from the Himachal Pradesh state govern-
ment. The budgetary documents analyzed in this paper are usually
unavailable to researchers due to official secrecy. The data used in
this study became available because a Member of the state Legis-
lature (MLA) raised a question about the afforestation spending
for four years (2016-2019). In response to the MLA’s question,
state law required the Forest Department to compile and report
expenditures that would not otherwise have been made public.

Himachal Pradesh has spent an estimated $248.24 million US
dollars (real expenditure) on afforestation since 2002, covering
an area of 236,686 Ha (Himachal Forest Statistics, 2019). The state
has planted about 1.14 million hectares since 1950 to improve for-
est cover, livelihoods, and ecosystem services (Fig. 1). Afforestation
peaked between 1985 and 1990 at 32,000 ha per year. Since the
late 1990 s afforestation acreage has declined below 12,000 ha
per year. Conversely and during the same period, the total real
expenditure of the state on tree planting has increased (Fig.2). Dur-
ing the fourth Five Year Plan (1969-1974) was only $1.31 million,
which increased to $110.11 million during the eleventh Five Year
Plan (2012-2017). The total expenditure of the state on tree plant-
ing during the fourth Five Year Plan (1969-1974) was only
$1.31 million, which increased to $110.11 million during the ele-
venth Five Year Plan (2012-2017) (Himachal Forest Statistics,
2019).
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Fig. 1. Area planted in Hectares in Himachal Pradesh since 1950. Each histogram bar reflects the total area of tree planting in each of India’s Five-Year Plans since 1950

(Himachal Forest Statistics, 2019).

Year

Fig. 2. Total afforestation spending in Himachal Pradesh in each of India’s Five-Year Plans since 1950 (Real expenditure). The total expenditure in rupees for each period has

been converted using the conversion rate of 70.92 rupees per dollar prevalent during the time of analysis (Himachal Forest Statistics, 2019).
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To predict the relationship between afforestation budgets,
activity, and effectiveness, we analyze Himachal Pradesh govern-
ment documents between 2016 and 2019 that record the location
of 2024 plantations and the $5.67 million spent for their planting
by the Himachal Pradesh Forest Department. These plantations
were planted on government-owned land by the Forest Depart-
ment to improve forest cover and ecosystem services. On average,
an individual plantation is 5.5 Ha in size and funded by a variety of
programs including the state and central government, and donors,
including the National Compensatory Afforestation Program, the
World Bank, and the German development bank, KfW (Saxena,
1997; Saxena, 2019). In addition to this data on plantations, we uti-
lize 16,674 forest polygons provided by the forest department
which record the location of forest department-owned land
throughout most of the state to assist in analyzing afforestation
spending.

According to Forest Department records, 2809 plantations were
planted between January 2016 and July 2019 of which 785 planta-
tions have missing data for afforestation spending, leaving us 2024
plantations with complete data. Further, this dataset does not con-
tain any plantation carried out in the cold and dry desert regions of
Himachal Pradesh, although other data shows that such planta-
tions were carried out. For example, In 2016, trees were planted
in Loser beat (8 Ha), Pagma beat (3 ha), and Kee beat (4.41 ha) in
Spiti Valley, a cold desert mountain valley of Himachal Pradesh sit-
uated at an elevation of >3800 m with annual precipitation of
about 200 mm (Kumar et al., 2018; Plantation Brochure, 2017).

Exact boundaries for the 2024 tree plantations were not avail-
able. Instead, we know which forest polygon the plantation
occurred in - polygons are generally larger than the plantation
area. Our analysis assumes that the smaller plantation areas within
the larger polygons have similar characteristics to the polygon as a
whole which may introduce errors in the analysis. We believe that
predicting the tree cover loss in the entire forest polygon reason-
ably predicts the tree cover loss in each specific plantation area
as the underlying factors and contexts shaping the deforestation
trajectories are likely to be similar in planted areas and in the sur-
rounding areas falling outside these enclosures in the forest poly-
gons. A complete replication dataset is archived at the Data
Repository for the University of Minnesota (Rana, Fleischman,
Ramprasad, & Lee, 2020).

3.2. Methods

We conduct two analyses. First, we analyze the patterns of
afforestation spending across tree canopy cover, forest tenure,
and land characteristics for our studied plantation polygons
(n = 2024) using the budget data. Second, we develop an ensemble
machine learning algorithm using data on land cover changes
between 2003 and 2015 in the statewide forest department poly-
gons (forest compartments, n = 16,674), as well as a suite of predic-
tor variables identified in the literature (Table A.1), and then
employ that ensemble model to predict probable tree cover loss
in our plantation polygons (n = 2024).

3.2.1. Distribution of afforestation spending

We study the distribution of afforestation spending in 2024
plantation polygons across tree canopy cover, forest tenure and
land characteristics. For analyzing across tree canopy cover, we
use four forest density classes given by the Forest Survey of India
(Forest Survey of India, 2019). These classes are Open Forests (with
10-40% tree canopy cover), Moderately Dense Forests (40-70% tree
canopy cover), Very Dense Forest (greater than 70% tree canopy
cover), and Non-Forest Areas (scattered or negligible tree growth,
unproductive areas). We also analyze the spending across different
forest tenure types including Reserve Forests (RF), Demarcated
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Protected Forests (DPF), Undemarcated Protected Forests (UPF),
and Cooperative Forest Society Forests (CFS). We also study the
distribution of funding across southern and northern aspects for
our set of studied plantations.

Forest plantations belonged to multiple forest tenure categories
with varying degrees of legal protection on the use of forest and
plantation resources. Out of 2024 plantations, 233 were carried
out in Reserve Forests (RFs), 1085 in Demarcated Protected Forests
(DPFs), 636 in Undemarcated Protected Forests (UPFs), 23 in Coop-
erative Forest Society Forests (CFS), and 11 in other areas including
municipal forests and community-owned lands. Tenure informa-
tion was missing for the remaining 36 plantations.

Forest tenure categories differ as per the degree of protection
granted under the Indian Forest Act, 1927. RFs are accorded the
highest degree of protection with high restrictions on community
use of forest resources. Protected Forests such as DPFs and UPFs
have a limited degree of protection with higher permissible com-
munity use of forest resources. DPFs are notified by a formal noti-
fication with clear demarcation of legal forest boundaries on the
ground, whereas UPFs are not notified and their boundaries are
not marked on the ground leading to contested boundaries with
private or village-owned lands. CFS are managed by Cooperative
Forest Societies established by the government in the 1940s and
1950s to ensure high participation of local communities in forest
protection and management through sharing of state revenue from
commercial harvesting of trees or extraction of resin (Ahal, 2002).
Commercial timber harvest is banned in all these tenure categories
in the state since 1986 (Gouri, Morrison, & Mayers, 2004).

3.2.2. Using machine learning to predict tree cover loss in studied
plantations

In our second analysis, we use a dataset that records the loca-
tions of all government-owned forest polygons in Himachal Pra-
desh (n = 16,674) to build an ensemble machine learning
algorithm that predicts whether forest cover in a given polygon
will decrease. We then employ that to predict probable tree cover
loss in plantation polygons (n = 2024). The various steps involved
in building an ensemble machine learning algorithm are listed in
Fig. 3.

3.2.2.1. Dataset and variables. Our training dataset includes data on
16,674 georeferenced forest polygons in Himachal Pradesh with
labeled tree cover loss outcomes for each forest polygon. Tree
cover loss for each forest polygon is a binary outcome and is mea-
sured as the decline in tree canopy cover (1 = tree cover loss; 0 = no
loss) observed between 2003 and 2015 using Forest Survey of India
data (Forest Survey of India, 2019). Himachal Pradesh Forest
Department GIS Lab provided all 18,672 forest polygons (forest
compartments) belonging to 33 forest divisions out of the total
43 forest divisions. We removed 1998 polygons due to missing
data.

We use past tree cover loss in forest polygons (n = 16,674) as a
proxy for evaluating plantation survival potential - i.e. we expect
that areas similar to those that lost tree cover in the past are more
likely to lose tree cover in the future. We find tree cover loss a use-
ful measure because it can be used in generalized contexts world-
wide, reflects the presence of enabling site conditions that support
tree establishment, and captures management practices and
human use effectively on a large scale. Furthermore, while individ-
ual tree mortality is to be expected over time in tree plantations
due to density-dependent mortality in a growing stand, tree cover
loss reflects the overall failure of a plantation to maintain forest
cover, and thereby to produce forest-based goods and services.

The predictors used in our algorithm to predict tree cover loss
outcomes in our labeled dataset (n = 16,674) include forest depen-
dence attributes of neighboring populations, soil and biophysical
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and past scholarship

|

|

afforestation spending.

|

Step 1. |dentify data and variables relevant to predicting plantation tree cover loss based on theory

Step 2. Build ensemble of Extreme Gradient Boosting, Random Forest, and Naive Bayes for
“training” polygons (70%, n=11671), and then test model on the rest 30% of the polygons (n=5003)

Step 3. Using chosen ensemble model, predict tree cover loss in plantation polygons (n=2,024)

Step 4. Predict wasteful spending by combining predicted tree cover loss in plantation polygons with

Step 5. Projecting wasteful spending for the state of Himachal Pradesh.

Fig. 3. A five-step approach to identify wasteful spending in afforestation programs.

characteristics, canopy cover before planting activity, and manage-
ment practices. In the model, we included data on population, for-
est dependents, farmers, literates, road density, grazing density,
and economic activity as indicative of higher forest dependence.
These social-economic and biophysical parameters are based on
theory, past scholarship, and technical studies (Agrawal &
Chhatre, 2006; FAO, 1984; Rana & Miller, 2019a). For example,
the model includes biophysical parameters such as temperature,
moisture, rooting conditions, slope, and soil quality factors as sug-
gested by FAO in its studies on land suitability and classification
that limit long-term productive tree growth (Booth & Saunders,
1985; FAO, 1984). In addition, key demographic and social-
economic variables are incorporated in the model based on past
research in the region (Agrawal & Chhatre, 2006; Rana & Miller,
2019a).

Data on these social indicators were calculated based on values
of census villages that were circumscribed within forest polygons
under study. Values for population, forest dependence, farmers,
and literates were summed up, whereas values for road density,
grazing density, and economic activity across villages were aver-
aged within forest polygons. Baseline data on forest cover, crop-
land, grassland, and the bare-land area within each forest
polygon was also included. Soil quality factors included in the
model are soil depth, soil carbon, soil organic carbon, bulk density,
cation exchange capacity, soil PH, and available soil water capacity.
In addition, we included information on altitude, slope, area, pre-
cipitation, temperature, and forest fires in the predictive model.
More details about the model predictors are provided in the SI
Appendix A, Table A.1.

3.2.2.2. Building ensemble model using forest polygons
(n = 16,674). We first build an ensemble of Extreme Gradient
Boosting, Random Forest, and Naive Bayes to generate tree cover
loss predictions for forest polygons (n = 16,674). In the model,
we assign tree cover loss as positive and tree cover gain as negative
values, and then randomly split the data into a “training” dataset
(70%) and a “test” dataset (30%). We develop the predictive algo-
rithm for the training dataset and then, use the resulting algorithm
to generate tree cover loss predictions for the test dataset for val-
idation. In the model, we use 10-fold cross-validation on the train-
ing dataset using three different models (Extreme Gradient
Boosting, Random Forest, and Naive Bayes). We center and scale
the variables, reduce the multi-dimensionality of the algorithm

using principal component analysis (PCA), exclude near-zero vari-
ance and highly correlated predictors to enhance the performance
of the algorithm. We also optimize ROC (Receiver Operating Char-
acteristics) for our three machine-learning models. Please refer to
supplementary text for more details for these three models (SI
Appendix A).

Then we train a stacked ensemble model on these three meta-
models (Extreme Gradient Boosting, Random Forest, and Naive
Bayes) with a boosted decision-tree algorithm to maximize recall.
Our model puts more value on recall as missing a true positive
(tree cover loss) may lead to serious ramifications for biodiversity
and forest cover in the area. Our chosen stacked ensemble model
resulted in higher values for balanced accuracy (used due to unbal-
anced nature of our test set), recall, and specificity. The chosen
model parameters include Stacked Ensemble Model: Predictive
accuracy is 64% (95% Confidence intervals: 62 to 65%). Kappa = 0.24;
Sensitivity = 0.74; Specificity = 0.50; Precision = 0.66; Recall = 0.74;
F1 = 0.69.

3.2.2.3. Using ensemble model to predict tree cover loss in plantation
polygons (n = 2024). Finally, we use our selected ensemble model
to predict tree cover loss probabilities for 2024 plantation poly-
gons, which we believe reasonably predicts the tree cover loss in
the plantations occurred inside these polygons. The tree cover loss
probability for these plantation polygons ranges from O to 100%.

3.2.2.4. Predicting wasteful spending in plantation polygons (n = 2024)
and for Himachal Pradesh. We then predict wasteful spending in
our 2024 plantation polygons by comparing predicted tree cover
loss with the budget spent in planting inside these polygons. For
example, if the forest department spent $10,000 planting trees in
10 ha of land inside a plantation polygon and our model predicts
a 50% probability of tree cover loss we consider this a likelihood
of 50% wasteful spending.

We then project wasteful spending for the state of Himachal
Pradesh combining the ML-based predicted tree cover loss with
forecasts of spending till 2030. This projection is useful for policy
since the Himachal Pradesh Forest Department has set ambitious
tree-planting targets to meet India’s Sustainable Development Goal
(SDGs) and other international afforestation commitments: to
bring 30% (up from the current 27.72%) of its total geographical
area (55,673 km?) under forest cover by 2030 (Times of India,
2020). To meet this goal, the Forest Department planned to plant



P. Rana, F. Fleischman, V. Ramprasad et al.

trees in 12,000 ha in 2020 and then increase it to 15,000 ha every
year beginning 2021 till 2030, totaling to 162,000 ha by 2030. The
projections for the per hectare cost of planting trees are based on a
10% annual increase in the present amount of spending per
hectare.

We also created an interpolated tree cover loss probability layer
using predicted tree cover loss probabilities of 2024 plantation
polygons using Kriging to graphically represent the distribution
of future tree cover loss probabilities for plantations across the
state of Himachal Pradesh. We used Ordinary Kriging with a stable
prediction model in the Geostatistical Analyst tool in ArcMap
(10.7.1) to generate the interpolated tree cover loss. We chose
the model based on normality and anisotropy parameters. Our
Kriging model semivariogram has 12 lags with a lag size of
651.27 m with a standard neighborhood type (max neighbors = 4,
minimum neighbors = 2). The prediction model has a root mean
square error of 0.14 and a root mean square standardized error
of 1.01.

3.2.2.5. Limitations. Ensemble machine learning algorithms are
becoming increasingly popular to generate insights concerning
research questions in various disciplines including social sciences
(Jean et al., 2016; Watmough et al., 2019), health sciences (Einav
et al.,, 2018), and natural resource management (Engler et al.,
2013; Tehrany et al., 2019). Although machine learning approaches
offer a powerful tool to learn, analyze and draw inferences from
patterns in the data, and to develop useful predictions about the
phenomenon understudy in a larger landscape, they are generally
employed to make predictions rather than provide causal inference
(Mullainathan & Spiess, 2017; Rana & Miller, 2019b). These projec-
tions may not fully incorporate the complex present and future
social-ecological dynamics of deforestation and forest degradation
due to the non-inclusion of relevant predictors related to forest-
agriculture or resource use dynamics (Mullainathan & Spiess,
2017; O'Neill & Weeks, 2018; Rana & Varshney, 2020). This may
lower the generalizability of our findings to other settings.

4. Results

Our results indicate that much afforestation spending in Hima-
chal Pradesh is wasteful (Figs. 4 and 5). Wasteful spending is a
result of tree planting in the following 4 types of places: 1) non-
forest unproductive areas, where tree cover loss is likely to be high
due to poor edaphic, biophysical, or social factors (47.7% of planta-
tion spending between 2016 and 2019, $2.7 million), 2) forests
with extensive southern exposure, where dryness is likely to limit
growth (33%, $1.86 million), 3) forests where contested land tenure
is likely to lead to conflicts with local communities that may lead
to tree cover loss (28.9%, $1.64 million), and 4) forests that already
have more than 40% canopy cover, where planting is likely to be
unnecessary to maintain forest cover (38.1%, 2.6 million). In con-
trast, only 14.1% of spending is likely to be effective, with tree
planting happening in areas of low-density forest (density between
10 and 40%), which are likely to be degraded forests having high
reforestation potential. Because our information is not sufficiently
spatially explicit, we cannot calculate the total area that is likely to
be subject to wasteful spending, but these figures indicate that at a
minimum, more than half of all spending is likely to be wasteful
(see Fig. 4).

Furthermore, a large share of planting occurred in areas where
our algorithm predicts a high probability of tree cover loss.
Between January 2016 and July 2019, 59.9% of the afforestation
spending occurred where the probability of experiencing tree
cover loss was greater than 50% and 35.6% of spending was in areas
where the probability of tree cover loss was more than 60%. 23.3%
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of afforestation spending is directed to areas where the probability
of tree cover loss was greater than 70% (Fig. 5, Table 1).

Table 1 shows the distribution of predicted plantation tree
cover loss by several planting locations, area and trees planted,
and afforestation spending by Himachal Pradesh Forest Depart-
ment in 2024 plantation polygons between 2016 and 2019. We
found that in areas with a higher likelihood of tree cover loss
(>50%), 5.93 million saplings were planted in 1216 plantation loca-
tions involving a total acreage of 6775 ha by forest officials in the
state of Himachal Pradesh during our study period (Table 1). For
our sample of 2024 plantations, 59.9% of total state expenditure
on planting, or $3.4 million, could have been saved by not planting
in areas with more than 50% predicted tree cover loss (Table 1).

Our results indicate that most of the afforestation funding is
going to Demarcated Protected Forests (51.8%), followed by Unde-
marcated Protected Forests (28.9%) and Reserve Forests (15.32%).
In contrast, Cooperative Forest Society (CFS) Forests receive a small
fraction of afforestation funding (1.14%) (Fig. 6).

Table 2 shows the distribution of tree species in terms of
planted area between 1950 and 2017 based on the analysis of
the government records (Himachal Forest Statistics, 2019). Since
1950, 44.1% of the total planted area in the state of Himachal is
of species that have high commercial value for their timber pro-
duction (e.g. Pinus roxburghii, Tectona grandis, Pinus wallichiana,
Cedrus deodara), but which are less valuable than other species
for widespread household uses such as fuelwood, fodder, or food.
In terms of total acreage, an area of 500,873 ha has been planted
with timber-oriented trees with little direct benefit to local com-
munities (Himachal Forest Statistics, 2019) This focus on commer-
cial timber species may lead to public disengagement: local people
do not benefit from commercial timber harvest both because prof-
its from timber harvests primarily go to the state government
rather than local communities, and also because commercial tim-
ber felling has been banned in the state since 1986. Public disen-
gagement may contribute to higher tree cover loss in planted
areas (Table 2).

Based on a forecasting model (Table 3) we project that if the
government of Himachal Pradesh maintains status quo expendi-
ture, it will spend $167.37 million between 2020 and 2030 on
planting trees. Adopting policy reforms that avoid planting in areas
that already have more than 40% tree canopy cover, i.e. where
planting is unlikely to contribute to improved forest cover or qual-
ity, would save $63.60 million, and tree-planting programs that
avoid areas with greater than a 50% probability of tree cover loss
would save $100.43 million, all while providing more benefits than
the current program, as trees not planted under these reforms
would be trees with a low probability of survival due to their
growth in areas with a high likelihood of tree cover loss, and trees
planted in areas where survival is low may be leading to the loss of
native grasslands and savannas (Joshi et al., 2018; Ratnam et al,,
2011; Ratnam et al., 2016) (Table 3).

5. Discussion & Conclusion

Our results show that poor implementation of tree planting-
based natural climate solutions can result in significant wasteful
expenditure. Despite strong governance and high financial capacity
in our study area, we find that tree plantations are at risk of failure
because of (a) poor biophysical suitability, (b) unclear or inappro-
priate goal and programmatic mandates, and (c) lack of community
involvement, resulting in substantial waste of financial resources
and tree planting efforts. Our results are consistent with several
recent studies of tree planting in Himachal Pradesh that use differ-
ent datasets and methods, but also find that tree planting programs
have disappointing outcomes (Aggarwal, 2021; Asher & Bhandari,
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Fig. 4. Afforestation spending distribution by tree canopy cover in studied tree plantation polygons (n = 2024). Fig. 4(a) shows that much of the afforestation spending (38.1%)
is going to forests that already have more than 40% canopy cover, where planting is likely to be unnecessary to maintain forest. Only 14.1% of spending goes to areas of low-
density forest (density between 10 and 40%), where reforestation potential is most likely to be high. Fig. 4(b) shows the spatial distribution of plantation polygons (n = 2024)
with tree canopy cover in a magnified portion of the studied area (Forest Survey of India, 2019). (2-column fitting image, color).
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Fig. 5. Afforestation spending and predicted forest cover loss in studied tree plantation polygons (n = 2024). Fig. 5 (a) shows the distribution of afforestation spending as
related to predicted tree cover loss in plantation polygons. Fig. 5 (b) shows the graphical representation of the distribution of predicted probabilities of tree cover loss for
plantations in a magnified portion of the studied region. The interpolated surface with the probability of tree cover loss has been calculated using ordinary kriging with the
tree cover loss probabilities of 2024 plantation polygons. (2-column fitting image, color).

2021; Coleman et al., 2021). Together these results suggest that More broadly, our results raise questions about optimistic
tree planting programs may not help India achieve its National assessments of the potential for natural climate solutions globally
Mitigation Potential (Griscom et al., 2020) without significant (Bastin et al., 2019; Strassburg et al., 2020). This is because Hima-
changes. chal Pradesh represents a best-case scenario for tree planting in the
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Table 1
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Distribution of predicted plantation tree cover loss by the number of planting locations, area and trees planted, and afforestation spending.

Predicted tree cover loss in plantation =~ Number of locations planted during

Total area planted Total trees planted Spending by in million US

polygons 2016-2019 (Hectares) (Number) dollars
0-10 % 2 15.00 13,500 0.01
10-20 % 49 297.27 284,497 0.15
20-30 % 99 521.28 479,358 0.25
30-40 % 203 1024.21 973,158 0.53
40-50 % 455 2545.66 2,299,789 133
50-60 % 486 2838.35 2,479,752 1.38
60-70 % 257 1363.22 1,227,029 0.70
70-80 % 302 1613.60 1,426,436 0.80
80-90 % 144 801.66 667,038 0.44
90-100 % 27 158.87 129,382 0.08
countries can lead to a total wasteful expenditure of about $20 bil-
350 lion by 2030. If the losses are equal to what our model finds in
Himachal, then the extent of wasteful expenditure might be as
2.94(51.8%) high as $100 billion over the next ten years in these countries. Such
3.00 I high levels of waste seem more likely given the forest governance
challenges common in much of the developing world, including
2.50 corruption, failure to follow tree-planting guidelines, and poor
local participation (Afroz et al., 2016; Brancalion & Holl, 2020;
500 Fagan et al., 2020).
Our research suggests that natural solutions may become more

1.64(28.9%)

1.50

100 0-87(15.32%)

Total spending (million dollars)

0.50
0.06(1.14%)

0.00 ‘

Reserve Forests Demarcated Undemarcated Cooperative
Protected Protected Forest Society
Forests Forests Forests

Forest legal classification

Fig. 6. Afforestation spending distribution by management types in studied tree
plantation polygons (n = 2024). This figure shows that most of the afforestation
spending is going to Demarcated and undemarcated plantation polygons, followed
by reserve forest polygons. Cooperative Forest Society forest polygons receive a
meager amount of afforestation spending. Other categories not shown in the graph
include plantations grown in municipal forest and community-owned areas ($ 0.3
million, 0.6%) and those with missing values for tenure ($0.13 million, 2.3%).

global south: good governance, generous funding, and an imple-
menting agency with decades of tree planting experience. All these
supportive contexts appear insufficient. We suggest that wasteful
spending may be caused by a focus on target-based program
implementation (see Fleischman, 2014), which favor outcome met-
rics such as area treated or the number of trees planted while offer-
ing limited guidance on how and where to plant trees in the
context of varying biophysical and socioeconomic suitability
(Apps & Price, 2013; Bastin et al., 2019; Brancalion & Holl, 2020).

The extent of wasteful expenditure from ineffective land
restoration programs is significant. For example, the Bonn Chal-
lenge launched in 2011 aims to bring 350 million hectares of
degraded lands under restoration by 2030 (Erbaugh & Oldekop,
2018; Suding et al., 2015). Under this Challenge, 61 countries have
pledged to restore 210 million hectares of degraded and deforested
land. With an average restoration cost of $1000 per hectare, these
countries would spend about $201 billion by 2030 to restore their
degraded landscapes. Even a conservative estimate of 10% wasteful
spending due to the planting of trees on unsuitable lands in these

effective when they address three main challenges identified in
this research: site unsuitability, lack of engagement with forest-
dependent communities, and program design that emphasizes
treatment area over fit with local biophysical and social contexts.
First, we found that tree planting programs in our study area do
not consider site suitability. We show that planting is targeted
towards areas with high tree cover, where planting is unlikely to
contribute to programmatic goals of increasing tree cover, or
where the probability of tree cover loss due to unsupportive bio-
physical and socio-economic contexts is high. Planting in areas
with high existing tree cover can have valid silvicultural justifica-
tions such as gap filling, enrichment planting, or restocking valu-
able species. For example, some silvicultural practices may
require growing trees in moderately dense forests (MDFs, 40-70%
tree canopy density) or gap-filling in very dense forests (VDFs,
>70% tree canopy density). These plantings may be targeted to
replace selectively harvested trees in mature forests, replace inad-
equate natural regeneration, introduce desired tree species,
enhance biodiversity in established stands or protect vulnerable
and sliding zones (Bettinger et al., 2016; Evans, 2009). With a
ban on commercial timber harvest in Himachal Pradesh, there
should be, in theory, no need to replace selectively harvested trees,
since trees are not supposed to be harvested. Furthermore, our data
show that the vast majority of tree planting in Himachal Pradesh is
of a small number of already common species, so plantings in
dense forests are unlikely to significantly increase biodiversity.
Second, tree planting budgets and activities do not adequately
engage with rural communities. While community participation
has been consistently identified as one of the strongest predictors
of forest sustainability in South Asia and beyond (Persha et al.,
2011; Saxena, 1997; Somanathan et al., 2009), and in the success
of forest restoration efforts (Erbaugh et al., 2020), only 1.14% of
tree planting funding ($0.06 million) supported community-
managed forests (Fig. 6). This systemic neglect of community par-
ticipation in afforestation programs is also reflected in the omis-
sion of tree species such as Grewia optiva, Anogeissus latifolia, and
Bauhinia variegata that are valued by communities for their contri-
bution to multiple livelihood needs. Quercus leucotrichophora (Ban
0ak), a naturally abundant species which is highly valued for both
fodder and fuelwood and supports more biodiversity than most
other native species (Shahabuddin, 2018; Shahabuddin &
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Table 2
Distribution of tree species in terms of planted area between 1950 and 2017.
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Planted tree species (local Botanical names

Total area planted (1950 to 2017)

Timber species vs. Fuelwood/fodder/food

names) (Hectares) species
Deodar Cedrus deodara 157,018 Timber species
Kail Pinus wallichiana 13,635 Timber species
Fir and Spruce Abies pindrow (Fir), Picea smithiana (Spruce) 18,810 Timber species
Chil Pinus roxburghii 285,628 Timber species
Walnut Juglans regia 4480 Timber species
Willow Salix spp. 11,353 Timber species
Khair Acacia catechu 181,236 Heartwood (commercial)
Shisham Dalbergia sissoo 25,782 Timber species
Bamboo Bambusa nutans, Dendrocalamus hamiltonii, D. 15,680 Fuelwood/fodder species
strictus

Poplar Populus deltoids, P. ciliata, P. alba 15,300 Fuelwood species
Robinia Robinia pseudoacacia 54,110 Fuelwood/fodder species
Leucenea Leucaena leucocephala 5581 Fuelwood/fodder species
Kachnar Bauhinia variegata 6551 Fuelwood/fodder/food species
Ban Oak Quercus leucotrichophora 2494 Fuelwood/fodder species
Amla Phyllanthus emblica 3360 Fuelwood/fodder/food species
Daroo Punica granatum 2579 Fuelwood/food species
Other broadleaf species Morus alba, Punica cornuta, Grewia optiva, etc. 333,414 Fuelwood/fodder species
Total 1,137,011

Table 3

A forecast of tree planting targets and associated wasteful spending in Himachal Pradesh between 2020 and 2030.

Year Total plantation Per hectare cost Total afforestation Projected waste if areas greater Projected waste if forests that already

target (hectares) of planting trees spending than 50% probability of tree cover have more than 40% tree canopy cover
(US dollars) (US million dollars) loss are planted (US million dollars) are planted (US million dollars)

I 1l 1 I\Y% \Y

2020 12,000 608.73 7.30 4.38 2.78

2021 15,000 669.60 10.04 6.03 3.82

2022 15,000 736.56 11.05 6.63 419

2023 15,000 810.22 12.15 7.29 4.62

2024 15,000 891.24 13.37 8.02 5.08

2025 15,000 980.37 14.71 8.82 5.59

2026 15,000 1078.40 16.18 9.71 6.15

2027 15,000 1186.24 17.79 10.68 6.76

2028 15,000 1304.87 19.57 11.74 7.44

2029 15,000 1435.35 21.53 12.92 8.18

2030 15,000 1578.89 23.68 14.21 8.99

Total 1,62,000 167.37 100.43 63.6

Thadani, 2018; Singh et al., 2014) was planted on only 2494 ha,
approximately one hundred times less than Pinus roxburghii (Chir
Pine), which has little livelihood or biodiversity benefit and is more
susceptible to forest fires. Although, our analysis dichotomizes spe-
cies valued primarily for commercial timber harvest, such as Chir
Pine versus those valued for fodder, fuelwood, or food, such as
Ban Oak, in ways that may simplify forest diversity’s contribution
to livelihood use, the favoring of timber species follows global
trends. Commercial timber species dominate plantation programs
in the tropics and subtropics, including Eucalyptus (31%), Pinus
(27%), Acacia (6%), Tectona grandis (6%), and Cupressus (1%) (Kindt
et al,, 2021). This is particularly surprising given that commercial
timber harvest was banned in this region 30 years before the start
of our study period.

Nearly one-third of afforestation spending (28.9%) is devoted to
planting in forests with contested land tenure, which further
aggravates problems for local communities located near lands for-
mally classified as Undemarcated Protected Forests (UPF, Fig. 6).
Planting trees in UPFs threatens local livelihoods more than in
other forest ownership classes because these lands provide impor-
tant uses such as grazing cattle, cultural and traditional uses such
as organizing religious fairs of the village, and harvesting minor
forest products such as fruits, berries, or medicinal plants. Further-
more, UPFs form a central part of migratory routes that pastoralists
use in Himachal Pradesh, and tree-planting programs that are not

sensitive to the needs of pastoralists fail to support both planta-
tions and pastoralists (Ramprasad et al., 2020).

In areas with contested tenure and competing use, plantations
are less likely to survive. This is because where plantations threa-
ten livelihoods or are perceived as illegitimate because of con-
tested land tenure, plantation users are less likely to protect and
nurture plantations. Instead in contested areas, users are more
likely to remove fencing, light fires, and/or not monitor and protect
plantations against fire and grazing (Asher & Bhandari, 2021; Rana
& Miller, 2021). Tree planting in highly contested contexts can lead
to unfavorable social-ecological outcomes especially restricting
community access to forest resources including grazing, fodder,
or fuelwood (Aggarwal, 2020; Asher & Bhandari, 2021;
Ramprasad et al., 2020; Rana & Miller, 2021).

Third, current tree planting programs emphasize achieving
acreage and tree-based targets rather than achieving effective for-
est restoration or livelihood improvement. For example, Compen-
satory Afforestation Fund Management and Planning Authority
(CAMPA) is a flagship program of the Government of India to refor-
est and restore forest landscapes to compensate for the loss of for-
est cover due to construction of large-scale infrastructure, hydel-
power or other industrial projects (Asher & Bhandari, 2021). This
program has spent billions of dollars, but without a focus on situ-
ating tree planting within either broader silviculture-based or
landscape-based restoration programs. CAMPA rarely considers
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social, economic or biophysical contexts (Asher & Bhandari, 2021;
Borah et al., 2018; Ravi & Priyadarsanan, 2015), instead targeting
goals for acreage treated or trees planted without regard to the
appropriateness of such treatments. These target-based
approaches incentivize government agencies to plant trees that
are easy to propagate, such as Chir Pine or other exotic species,
rather than more locally valued species that may be harder to
propagate, such as Ban Oak, and also disincentivize the time-
consuming work of engaging with the local community and iden-
tifying suitable sites (Fleischman, 2014).

We suggest that natural climate solutions that rely on forest
restoration may avoid these problems by financing site-specific
interventions developed by affected forest-dependent peoples,
and by focusing on genuine measures of outcomes - such as
improvements in biodiversity, livelihoods, carbon storage, and
other benefits, rather than counting inputs such as acreage treated
or trees planted. Such an approach may require constraining our
expectations: a recent study in South East Asia finds only a fraction
of climate mitigation potential (0.3-18%) of reforestation esti-
mated based on biophysical suitability is achievable due to finan-
cial, land use, and operational constraints (Gopalakrishna et al.,
2022; Zeng et al., 2020). If this results in less total planting, this
should be conceived of as a benefit, as money not spent on waste-
ful planting can be reallocated towards more beneficial uses. In the
Indian context, recognition of community forest rights under the
2006 Forest Rights Act may provide a means to enable forest-
dependent people to design restoration strategies.

Governments and donors can support the local development of
site-specific restoration by providing information and technical
assistance to a wide range of stakeholders involved in forest
restoration. For example, a smartphone mobile app that predicts
the probability of a given forest patch for supporting long-term
tree growth developed using the same data analyzed in this paper
is now being used by the state of Himachal Pradesh (Rana &
Varshney, 2020). This app assists forest officials to locate the best
land for growing trees based on site characteristics. All stakehold-
ers including local communities, political representatives, NGOs,
and donors can monitor and evaluate the planting site decisions
made using this app. Similar efforts in other places may help
scale-up global restoration efforts to achieve the climate mitigation
potential of natural climate solutions while strengthening trans-
parency and accountability. In sum, more careful site and species
selection, and restoration practice may reduce the wasteful expen-
diture of tree planting-based climate solutions while benefitting
local biodiversity and rural livelihoods.

Researchers and communities could help government and non-
government actors identify priority areas for tree planting that
minimize wasteful expenditure, maximize co-benefits, and avoid
wasteful spending to maximize benefits from natural climate solu-
tions (Brancalion et al., 2019; Brancalion & Holl, 2020; Erbaugh
et al.,, 2020; Fagan et al., 2020). Wasteful afforestation/reforesta-
tion spending is particularly troubling because it reduces the avail-
ability of funding for other climate mitigation and adaptation
priorities while at best accomplishing much less than stated goals.
Re-allocating budgets obtained from avoided afforestation is
promising. In developing country contexts, activities that support
climate adaptation and mitigation, welfare and social security nets,
education, women’s empowerment, and wellbeing are some high
priority policy items that are better addressed instead of planting
trees where they cannot thrive.
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